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Abstract

-In an earlier paper_"U.b-44& numerical solutions of the Landau

equation were obtained which show that the tail of the electron velocity

distribution function differs substantially from a local Maxwellian distribu-

tion in the solar transition region and upper chromosphere. In this paper, I

show that a linearized version of the BGK model kinetic equation, with

collision frequency proportional to v3 , can be solved analytically for the

tail of the distribution function in an atmosphere with prescribed temperature

and density profiles. Results for the angle-averaged distribution so obtained

are shown to be in reasonably good agreement with earlier numerical results.

Accurate, easily evaluated approximations for the tail of the distribution

function are derived from the exact formulas. These show that both the zeroth

and first angular moments of the distribution function are nearly power laws

over a wide velocity range in the low transition region. I also show that the

heat flux into lower temperature region is carried by suprathermal electrons

with velocities well above local thermal velocities. The formulas given here

should be useful in the calculation of electron-ion inelastic collision rates

under conditions in which the local Maxwellian approximation is invalid.
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I. Introduction

In Shoub (1983; hereafter referred to as Paper I) numerical solutions of

the Landau equation were obtained for the electron velocity distribution

function (EVDF) in idealized models of the solar transition region. These

results showed that the EVDF forms a pronounced, anisotropic, high-velocity

tail in the low transition region (T < 3 x 105 K) and upper chromosphere as

the result of the streaming of fast electrons down the temperature gradient.

It was also shown that, in consequence, inelastic electron-ion collision rates

are signficantly enhanced in these regions relative to their values obtained

using a local-Maxwellian energy spectrum.

The results reported in Paper I were obtained through involved numerical

calculations whose nature and expense hinder the development of physical

intuition concerning the underlying transport processes. In this

complementary paper I therefore address the same problem as considered in

Paper I, but here use a Bhatnagar-Gross-Krook 1(1954) model for the collision

term. Moreover, I take advantage of my earlier finding that only the tail of

the EVDF differs significantly from a local Maxvellian under transition region

conditions in order to linearize the BGK collision term and thereby obtain an

analytically soluble kinetic equation. In this approximation one can obtain

an expression for the EVDF in an atmosphere with a prescribed temperature and

density profile. Results for the angle-averaged distribution function so

obtained are shown to be in reasonably good agreement with those found earlier

using the Landau equation.

Although the analytical solutions I obtain are relatively complicated

[see equations (7a) and (7b)], they can be accurately approximated at supra-

thermal velocities by much simpler expressions which provide insight into the

underlying physical processes. These formulas will hopefully be useful to
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workers wishing to evaluate electron-ion inelastic collision rates under

conditions in which electrons do not have a local Maxwellian energy spectrum.

Two new results which emerge from the present work are a) that the

angle-averaged distribution function is nearly a power law over a wide

velocity range in the lower temperature regions of the atmosphere, and b)

that the conductive energy flux into the lower temperature regions is carried

predominantly by suprathermal electrons with velocities 3 to 25 times local

thermal velocities. The latter result shows clearly that classical transport

theory, which predicts that the heat flux is carried by electrons with

velocities two to three times local thermal velocities, is invalid under

conditions met in the solar transition region.
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II. Formulation

Consider an inhomogeneous but isobaric slab of fully ionized hydrogen in

which the protons are idealized as being infinitely massive and at rest. The

slab has thickness L, and any magnetic field present is assumed to be parallel

to the gradient direction, which I take to be the z-axis. Let f(p ,v,z)

denote the EVDF, with v the electron velocity, and U - v'z/vI. The form of

the BGK equation I shall use is then

(if
f- j (vz) {f*( ,v,z) - f (P ,v,z)} (i-)

dz

where

f *(,vz) - n'(z)(m/2zkT'(z))3 / 2 exp[-m(v-w'i z)2 /2kT'(z)] (lb)

is a local-Maxwellian distribution with parameters n',w', and T' and (cf.,

Rawls, Chu, and Hinton 1975), and

16TT e4nlnA 2
V(v,z) = r 3 {erf(Q) - ; &exp(-E 2 )} (Ic)

with E - v/vth and vb2  " 2kT/m. Here m is the electron mass, lnA is theth

coulomb logarithm, and r is a constant to be chosen later. When r - 1, v-1

is the slowing down time of a test electron in a fully ionized hydrogen plasma

(Krall and Trivelpiece 1973).

Several remarks concerning equation (Ia) are in order. First, note that

although at first sight (1a) appears to be a linear equation, it is not. In

order to conserve particles, momentum, and energy, the parameters n', T" and

w' appearing in f* must be chosen to satisfy the constraints
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particles
I

f d v v2 v(v)[f* - f] 0 (2a)

-1 0

momentum

Id dv v 3 v(v)f* - f] " d v3 V )L. {1 M p f}]

d fdv v3 'ei(v) f(J ,v) (2b)

-1I

energy CO
fdu dv v4 v(v)(f* - f] - 0 (2c)

-1 0

and are, therefore, functionals of f. Here Vei - 4 e 4 nl i/(m 2 v 3 )
ei 4re UlDMM v is the

electron-proton momentum transfer collision frequency, and 1/2 v ei(v)

a [Il -42) Wf is the electron-proton collision term appearing in the Landau

equation (to leading order in m/m p ). Constraint (2b) thus forces our model

equation to give the correct electron-proton momentum transfer. In general,

therefore, the BGK equation is highly nonlinear and consequently is

analytically intractable. Fortunately, our present interest in conditions for

which the bulk of the electrons have nearly a locally Maxwellian distribution

(see Paper I) permits reasonable estimates of n', T', and w' to be guessed a

riori. For inspection of equations (2a-2c) shows that the condition f nearly

Maxwellian at thermal velocities implies that n', T' and v' will be close to
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the corresponding thermodynamic variables which, in turn, may be estimated

using macroscopic (i.e., classical) arguments. I therefore choose

T'(z)7/2 - T7/ 2 + (T7/ 2 - T7/2) z/L , (3a)

n' - constant , (3b)

w= 0 , (3c)

corresponding to an isobaric slab of thickness L in which energy is

transferred solely by (classical) thermal conduction. (To arrive at (3a) I

have treated InA as a constant.] Here Th and Tc are temperatures

characterizing the incoming EVDF at the upper and lower boundaries,

respectively. With n', T' and w' regarded as known functions of position,

equation (la) reduces to a linear, ordinary differential equation in which

L, and v appear as parameters. This represents a significant mathematical

simplification relative to the Landau equation, where P and v enter as

independent variables. Note, however, that because the above constraints are

violated in this approximation, one cannot obtain a kinetic-theoretic predic-

tion of the electron temperature profile. One must solve the nonlinear

problem for this.

In order to retain the advantage mentioned above, I have omitted a

thermal electric field term from the lefthand side of (la). This is not a

serious omission for my present purposes because, as argued in detail in

Paper I, this term is unimportant relative to the streaming term at

suprathermal velocities.

It is useful to note that by analogy with the equation describing photon

transport in a medium in which the matter is in a state of local thermodynamic

equilibrium, the linearized BGK equation can be interpreted in the following

simple way. Electrons travel linear trajectories at constant velocity, with
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the pathlength of a given flight being a random variable whose probability

distribution is fixed by the electron's speed and collision frequency with

background electrons and protons. A given flight is terminated in a single

thermalizing event in which the electron is "absorbed" and then "re-emitted"

with a new random velocity whose probability distribution is f*. This, of

course, is not how electrons behave. Nevertheless, proper choice of the

collision frequency v allows many aspects of more complicated descriptions

(e.g., via the Landau equation) to be modeled accurately.

Since my interest lies in the high-velocity tail of the distribution, one

final simplification I shall invoke is to use the large-velocity form of the

collision frequency given in equation (lb). It is not necessary to do this,

but the resulting formulas are more transparent if I do. Further, I shall

omit the primes from n', T' and w', because I no longer distinguish between

these variables and their thermodynamic counterparts.
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III. Analysis

a) Formal Solution

Let us begin by introducing x = inT as the independent spatial

variable and use (ic) and (2b) to rewrite (Ia) in the form-

4Adf f*
-f - f , (4a)x

where

CT) C ; '(T) - (kT)2/4r-e 4 nln1 (4b)

j(T) = v/vth(T) ; v = 2kT/m (4c)

It follows from (3a), (3b) and (4b) that

2X(Th) /Th l1/2F1 C 2
caCT) - _(T 7/~L1- jj (4d)

Equation (4a) is to be solved subject to the boundary conditions

f(z-0) - f*(v;Tcnc) nc (m/27rkTc)3/2 exp[-(mv2/2kTc)]; > 0 (5a)

f(z-L) - f*(v;Th,nh) - nh (m/2 kTh)3/2 exp( _mv2/2kTh)]; < 0 (5b)

with nhTh - aCTc . These are the same boundary conditions as used in Paper I.

The choices Th - 2 x 106 K, Tc - 8.1 x 103 K, nh - 3 x 108 cm - 3 and

L " 5 x 109 cm will hereafter be referred to as the standard model.

The solution of equation (4a) subject to conditions (5a,b) may be written

as

8



T

* r1 
ex p v- P (T ,T') J dT'

f(i,v;T)- f*T c )CT") 4 -; Oj<l , (6a)+f i (T') (T') T" -
Tc

and

f((,v,T) )f(Th)exp[-pxp[-ph)/Uv(-;O~k l C16b)

" (T') (T') V"

T

where u -1 and

5/2

Pv(T,T) 2 -(-) 1 (6c)5a(T') (T') IT ] •(c

The quantity exp[-pv(T,T)/Iul] is the probability that a ()jv) electron

"emitted" at T" will survive a flight to T. Note that for fixed v, pv is

symmetric in T and T, since o is proportional to T- 5 /2. An electron of

given velocity is thus equally likely to goifrom T to T" as from T' to T.

However, it is much more likely that an electron "emitted" with a given value

of E will survive a flight to lower temperatures than one to higher tempera-

tures. This is an important point, because at any given location electrons

are available only over a limited range of E.

It will be helpful later on to notice that equation (4a) implies that

the quantity c may be interpreted as the electron mean free path, measured

in units of InT.

Equations (6a,b) may readily be integrated over V to obtain the zero'th

and first angular moments. When written in dimensionless form, the results

are:
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1/ 7{(T/Th)51 2 exp(-r 2 T/Th) E2 [PV(T,Th)]

+ (T/T )5 /2 exp(-r 2 T/T ) E [pv(TTc)] (7a)
T

+(, 4)-i exp(-l2 T/T') EI[Pv(T,T')] dT'/T'}

Tc

and

I = T {(T/T )5 /2  E 2 T/T) E3 [pv(T,Tc)]

- (T/Th)5/2 exp(- 2 T/T h ) E3 [Pv(T,Th) (7b)

T

+ (,4)-lf exp(- 2 T/T') E2 [pv(T,T')] dT'/T'

Tc

Th

(ae4f1 f exp(- 2 T/T') E2 [Pv(Tr)] dT'/T}

T
1 1

Here P (2trv f - 1/2 /dP , 3/2 idP, and

EnC) =f t - a exp(-xt)dt, n - 1,2,3,..., are exponential integral

functions.

The right side of equation (7a), evaluated with r - 1 and parameter

values equal to those of the standard model, is compared to corresponding

Fokker-Planck (FP) results in Figure 1. It is seen that although BGK theory

(with r = 1) predicts somewhat larger deviations from a local Maxwellian than

does FP theory, the results are qualitatively similar, at least over the

velocity range in which the FP results have been calculated. I find that
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choosing r = 2.2 gives quite good agreement in the tail of the distribution.

Note that since Figure 1 is a log-log plot, the nearly linear behavior of

curves at intermediate velocities implies that *0 is approximately a power law

over this velocity range. This result is derived below.

Figure 2 shows the dimensional, angle-averaged distribution

= (21vth)- n'0 at several locations with corresponding local-Maxwellians

shown as dashed lines for comparison. The relatively weak spatial (tempera-

ture) dependence of the high-velocity tails should be noted.

A Chapman-Enskog analysis of equation (4a) yields the result f(',v,T) =

* + fc + 0(32), where

cl = df*/dx - a ( :"2 )f* (8a)

Thus, the classical BGK heat flux is

qcl M 1/2 m (2) 2/3f v5 f1 dv (8b)

0

3-1/2 (kT)vth- 2 exp(- ) dE . (8c)-4/3 ~ nTvh~Tj~(

0

The classical and exact heat-flux integrand [as obtained from equation (7b)]

are compared at several locations in the standard model in Figure 3. From

these results it is clear that the conductive energy flux into the lower

temperature regions is carried predominantly by suprathermal electrons.

The heat flux obtained from (7b) and normalized to its classical value is

shown as a function of temperature in Figure 4. Results for several pressures

are shown; all other parameters have their standard values. Since the

temperature profile I have assumed is derived from the condition that the

classical flux be constant, the spatial variation of the ratio shown in

11
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Figure 4 is due entirely to the variation of the "actual" heat flux. That

this "actual" heat flux exhibits a spatial variation is of course incorrect,

and is due to violation of energy conservation (equation (2c)) in the present

linear theory. That the calculated flux is not constant implies that the

correct temperature profile should be different from the T7/2 law assumed. In

fact, the spatial variation of the flux shown in Figure 4 implies that the gas

is cooled at high temperatures and is heated at low temperatures. Thus, the

correct temperature profile will be steeper than the classical profile at high

temperatures and less steep at low temperatures. Unfortunately, determination

of the correct "constant-flux" profile requires solution of the nonlinear

problem and for this reasca is deferred to a later publication.

b. Approximate Solutions

The expressions for the distribution function given above (i.e.,

equations (6a,b) and (7a,b)) are difficult to evaluate and to interpret. In

this section I derive useful approximations to these expressions.

Consider the integral in equation (6b). Using (2b), (3a,c) and (4c,d),

it can be rewritten in the form

STh
i dT"

J(i',v,T) - CM(T)(Cc4 )- J exp[-F 2 h(T-)] ( ,9a)

T

where / - i, CM(T) - n(T)(m/2 rkT)-3 / 2  (Note: CM(T) a T -51 2) , and

+ (T) 72[(5/2 (bh(T-) - - -1 9b)

Here, as elsewhere, temperature-dependent quantities written without arguments

are to be evaluated at T. The quantity hT) has a minimum at T" - T*, where
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7/2

(T*) -. (10)

Note that since both Ct(T) and C(T) are proportional to T-1/ 2  it follows from

(10) that T* is independent of T; i.e., T* - T*V',v). This point will prove

significant later on. For large r2 the integrand in (9a) is sharply peaked

about T" = T ; the integral may therefore be accurately approximated by

expanding h(T') in a Taylor series about T' - T*, i.e., h(T) Z h(T *) +

l/2h"(T*) (T' - T*) 2 , provided, of course, that T < T* < Th. Substituting

this expansion into (9a) and making use of the relations

h(T*) - 1 _ (*) (11a)

h"(T*) - ( ) ((b)

gives

CM (T )  2T* 7 2 I ' T 2 ( ' T
J(', ,T) - - exp (-2 h(T*)] f. exp [- &(T*) ( ) d(T) (12a)

7 [(T*) 2 .(. exp [-r 2 h(T*)] (12b)

f*(T*) 4 / 1 2 T

M *(*) 4, Iexp 2,( T) 2 [l- (12€)

where

1/2 1/7
T * (T) , (12d)

13
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and

f*(T*) - n(T*) (m/27kT*)- 3/2 exp [-,(T*) 2] (12e)

In going from (12b) to (12c) I have used the fact that CM(T>.cT-5/2, and that

-0 TT ) (T*6 . 1, which follows from (10). Equation (12d) is valid provided

T <Th or, equivalently, provided I <c 6 < (T 7/2 > (g6)-.

ht is h/T / and j ' 6-
It is easily shown that when T* < Th the integral term calculated above

dominates the upper boundary term in equation (6b). Thus,

2

(_ 4 ) T T 5 T 'I="3 a
f(',v,T) 7 (T)2]2 )TT* f*(T*) exp (T*) -

which is valid provided

/T , 7 / 2

I < o6 < and (z 6)-1  < . <I .(13b)

where T (1±v) is defined in equation (10).

Equation (13a) is readily interpreted: the distribution function at iv

and T is equal to a local Maxwellian distribution evaluated ai v and at a

higher temperature T*(;iv), times the probability exp[- (T*) 2 { -}

that a (P.v) electron "emitted" at T* will survive a flight to T, times the

interval r- 4# 2 1/2 i nabufT*
n2in lnT about lnT, over which 4, v) electrons are

effectively emitted. Note that since T is independent of T, f acquires a
dependence on T only through the I - (T )5/2 factor appearing in the argument

T*

from Table I, where values ofT and E(T*) are listed for several values of

their arguments.
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Since T* is the temperature at which a suprathermal ( ,v) electron (w<O)

suffered its last thermalizing collision, it is seen from Table I that

f(,i,v,T) becomes increasingly nonlocal in character as increases and as

->-I. Note also that the quantity '(T*) has several meanings: i) it is the

value of with which (.,v) electrons leave T*; from Table I is it seen that

2.25 < (T*) < 3.25. Thus it is the near-thermal part of the distribution

which contributes electrons to lower temperature regions. ii) The quantity

4 r]1/ 2 - 1.34/(T*) is the range of InT, centered on lnT*, which

contributes (-,v) electrons to lower temperatures. iii) The quantity

exp (--(T*)2 { _ (T,)5/2}] is the probability that a (; ,v) electron7 T

"emitted" near T* will survive a flight to T. Surprisingly perhaps, this

probability decreases as r increases (because T* increases).

An approximate expression for the distribution function which is valid

6 IT,\7/2
for T* > Th (i.e., for a > ) and ,< 0) is easily obtained from (9a) by

expanding the quantity h(T') in a Taylor series about T' Th, Adding the

upper boundary term to the result I find that

2Th / _r2Th

f(,E,T) CM(T) {exp[-E 2 h(Th) (. exp[- 2 h(T)I}[l 0( -/2i

0,E > b)7/2

where, from (9b), h(T) -1 and

T 2(T [)T h) 5/2 - T5/2]
h(Th) T T -< 1 (14b)

. The inequality in (14b) follows from the conditions T < Th and T* > Th. Note
T

that as increases, andT decrease and, in consequence, f tends to

15
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f*(Th). Note also that f(Th) f* (Th), as required by the boundary condition

(sb).

An approximate expression for the distribution of upward (u > 0)

propagating suprathermal electrons can be obtained by expanding the argument

of the exponential in the integrand (in 6a) about T - T. The result may be

written

f*(T) + C(T ) exp- q(T] (/Tc)5/2 (15a
f, ,T) = (T*)7/2 + C c + * T/2T

0 <P_<1

where

7 /2

q(T) - T [(T)5/2 -

q(T') + MC(5b)
and now

(T*)7/2 6
('T)71 . Ug (15c)

The salient features of (15a) are the following. First, if eitherc) 0

or 0, then f -+ f*(T). Second, f(Tc ) - f*(T.) in accord with (Sa).

Third, for T > Te and T* > T, the second term in (15a) is small compared to

the first. It therefore follows that

1i~n(l+g6)f.T

f(, ,T) du " - f*(T) (16)S6

0

so that there are significantly fewer suprathermal electrons 
propagating up

the temperature gradient than in LTE.
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The contribution of downward propagating electrons to the angle-averaged

distribution in the velocity range 1 < a"6< (Th/T) 7 1 2 can be found by

integrating (13) over u between the ranges -1 <u< -(a 6 Y1 I. Using (10) and

(13) and defining 11 (-,T) to be (ar6)-'-1 I find that
1

Jo (T) - f f(- U, T) duj (17a)

(7-) 1/2 7f
M() exp 3y (I - 2 (17b)

Expanding the argument of the exponential about y 0 1/ yields

Jo (Q,T) Z _IT f*(T*) ex -2 V(T*) 2{,6 7

; i a 6  _ Th 7/2C1 c

where f* is a local Maxwellian, -4)/2 and t* - T*v -1); that

is,

T (g6)2/7 (17d)

Note that T T(v) only. By using the relation oieIT..!* - 1, equation

(17d) can be interpreted in a way similar to that in which equation (13) was

interpreted.

17
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On comparing (17c) with (16) it is seen that upward propagating electrons

make a negligible contribution to the angle-averaged distribution for o6 >>

1. Thus,

foT)_ .2 -2 [ 1-5/71
fo( ,T) ,, pp + 0 (18a)

r2/71
5 4 ()- 4 17  ()-31/7 7MT (ML 27 -5/1

(I + 0 (;Xr6)-5/ (18b)

1 < 6 <(Th) 
7 /2

Two aspects of these formulas are worth mentioning. F'-st, since both ot and T

are proportional to T-11 2 , while CM is proportional to T- 5/ 2, it is seen that

Sd5/7
fo depends on T only through the (c I term in the exponential. The

spatial dependence of the tail is therefore quite weak, as seen earlier in

Figure 2. Second, at low temperatures (large a), the primary velocity

dependence in (18b) is through the -31/7 term; the exponential dependience is

relatively weak. For example, in going from E-3 to -20 at T - 5 x lO4 K

(a- 9.23 x 10-3), the exponential term decreases by a factor of 1.9 x 102,

while the E31/7 term decreases by a factor of 4.5 x 103. In low temperature

regions the angle-averaged distribution is therefore nearly a power law, as

was also seen earlier in Figures 1 and 2.

Multiplying equation (13) by P and integrating from p " -1 to U - 6)-1

yields

18



1T

f1 CLT) - 3 f(- i,.T) d; (19a)
2 f

-3f (;",T) ; 1< 0 6(Th)7/2  (19b)

where fo( ,T) is given by (18a) or (18b). Thus f1 is also nearly a spatially

independent, v-31 / 7 power law in the low temperature regions of the

atmosphere. This fact accounts for the slow falloff of the heat flux

integrand shown in Figure 3.

3. Generalizations

The above results are easily generalized to the case in which the

background temperature profile is of the form

Tr r r Z
Th + (Th Tc) ; r > 1 (20a)

n(z)T(z) - constant (20b)

The results are:

X(Th) fT Th - Tcr
rL "Tr  (21a)

T 6 I/r

-' -Or (21b

19
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where the last equation is valid for

Sr
6  r

1 ~(21d)

The case r - 3 is of special interest, for here Ur = constant, and both fo and

f reduce to pure v- 5 power laws.

IV. Summary

In the preceding I have shown that under inhomogeneous conditions in

which only the tail of the electron velocity distribution departs

significantly from a local Maxwellian distribution, as is the case in the

solar transition region, a linearized BGK collision term with collision

frequency proportional to v- 3 gives results for the tail of the distribution

which are in adequate agreement with results obtained from the Landau

equation. Approximate analytical expressions were obtained which show that

the zeroth and first angular moments of the distribution (and, undoubtedly,

higher order moments) are nearly power laws over a wide velocity range in the

lower temperature parts of the atmosphere.

The linear BGK model discussed here does not preserve the collisional

invariants and hence is not useful for determining the kinetic temperature

profile corresponding to energy transfer solely by conduction. Nevertheless,

the model does unambiguously show that under appropriate conditions (say, a(T)

> 10- 3.5 over a substantial temperature range) the energy flux into the lower

temperature regions is carried by suprathermal electrons with velocities much

larger than local thermal velocities. This is in contrast to the classical

prediction that the energy flux is carried by electrons with velocities two to

three times local thermal velocities.

This work was supported in part by NASA grants NGL 05-020-272 and NAGW-92

and Office of Naval Research Contract N00014-75-C-0673.
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Table I

Parameters in BGK Solutions

T 5 x 104 K T- 3 x 10 5 K
- 9.26 x10- c-3.77 x 10

!_*(u , r) (T*) !*( , l E r(T*)
T T

3 -1.0 1.73 2.28 1.33 2.61
3 -0.5 1.42 2.51 1.09 2.87

4 -1.0 2.82 2.38 2.19 2.72
4 -0.5 2.31 2.63 1.80 2.98

5 -1.0 4.14 2.46 3.20 2.81
5 -0.5 3.40 2.71 2.63 3.08

7 -1.0 7.37 2.58 5.71 2.93
7 -0.5 6.04 2.85 4.68 3.24

10 -1.0 13.6 2.71 -- --

10 -0.5 11.2 2.99 --...

15 -1.0 27.2 2.87 ....
15 -0.5 22.3 3.17

21
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Figure Captions

Figure I Dimensionless, angle-averaged distibution function versus P - v/vb.

Solid lines, Landau equation results. Broken lines, BGK results.

Dashed line, a local Maxwellian distribution.

Figure 2 Dimensional, angle-averaged distribution function fo versus velocity

measured in units of the thermal velocity at the upper boundary.

Solid lines are BGK results; dashed lines are local Maxwellians.

Figure 3 Absolute value of the heat flux integrand versus velocity mesured in

units of thermal velocity at the upper boundary. Solid lines, full

BGK result. Dashed line, classical transport theory prediction for

BGK equation.

Figure 4 Heat flux calculated from linear BGK equation (normalized to its

classical value) versus temperature. Results for several pressures

are shown.
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